
Chapter 8Control of a Looping KiteIn order to demonstrate the versatility of the proposed real-time iteration s
heme we presenthere the 
ontrol of an airborne kite as a periodi
 
ontrol example. The kite is held by twolines whi
h allow to 
ontrol the lateral angle of the kite, see Fig. 8.1. By pulling one linethe kite will turn in the dire
tion of the line being pulled. This allows an experien
ed kitepilot to �y loops or similar �gures. The aim of our automati
 
ontrol is to make the kite�y a �gure that may be 
alled a �lying eight�, with a 
y
le time of 8 se
onds (see Fig. 8.2).The 
orresponding orbit is not open-loop stable, so that feedba
k has to be applied duringthe �ight � we will show simulation results where our proposed real-time iteration s
hemewas used to 
ontrol the kite, with a sampling time of one se
ond.8.1 The Dual Line Kite ModelThe movement of the kite at the sky 
an be modelled by Newton's laws of motion anda suitable model for the aerodynami
 for
e. Most di�
ulty lies in the determination ofsuitable 
oordinate systems: we will �rst des
ribe the kite's motion in polar 
oordinates,and se
ondly determine the dire
tion of the aerodynami
 for
es.8.1.1 Newton's Laws of Motion in Polar CoordinatesThe position p ∈ R
3 of the kite 
an be modelled in 3-dimensional Eu
lidean spa
e, 
hoosingthe position of the kite pilot as the origin, and the third 
omponent p3 to be the height ofthe kite above the ground. With m denoting the mass of the kite and F ∈ R

3 the totalfor
e a
ting on the kite, Newton's law of motion reads
p̈ =

d 2p

dt2
=
F

m
.Let us introdu
e polar 
oordinates θ, φ, r:

p =





p1
p2
p3



 =





r sin(θ) cos(φ)
r sin(θ) sin(φ)

r cos(θ)



 .139
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Figure 8.1: A pi
ture of the kite.Note that the distan
e r between pilot and kite is usually 
onstant during �ight, and θ isthe angle that the lines form with the verti
al. In these 
oordinates, p̈ looks as follows
p̈ =

d

dt

(

∂p

∂θ
θ̇ +

∂p

∂φ
φ̇+

∂p

∂r
ṙ

)

=
∂p

∂θ
θ̈ +

∂p

∂φ
φ̈+

∂p

∂r
r̈ +

∂2p

∂θ2
θ̇2 +

∂2p

∂φ2
φ̇2 +

∂2p

∂r2
ṙ2

+ 2
∂2p

∂φ∂θ
φ̇θ̇ + 2

∂2p

∂r∂θ
ṙθ̇ + 2

∂2p

∂r∂φ
ṙφ̇.

(8.1)Let us introdu
e a lo
al right handed 
oordinate system with the three basis ve
tors
eθ =





cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)



 , eφ =





− sin(φ)
cos(φ)

0



 , and er =





sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)



 .In this 
oordinate system, the partial derivatives of p with respe
t to θ, φ, r be
ome
∂p

∂θ
= reθ,

∂p

∂φ
= r sin(θ)eφ, and ∂p

∂r
= er,and

∂2p

∂θ2
= −rer,

∂2p

∂φ2
= −r sin2(θ)er − r sin(θ) cos(θ)eθ, and ∂2p

∂r2
= 0,as well as

∂2p

∂φ∂θ
= r cos(θ)eφ,

∂2p

∂r∂θ
= eθ, and ∂2p

∂r∂φ
= sin(θ)eφ.



8.1 The Dual Line Kite Model 141Eq. (8.1) 
an therefore be written as:
p̈ = eθ

(

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇
)

+ eφ

(

r sin(θ)φ̈+ 2r cos(φ)φ̇θ̇ + 2 sin(θ)ṙφ̇
)

+ er

(

r̈ − rθ̇2 − r sin2(θ)φ̇2
)

.De�ning
Fθ := F · eθ, Fφ := F · eφ, and Fr := F · er,we 
an write Newton's laws of motion in the form

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇ =
Fθ

m
,

r sin(θ)φ̈+ 2r cos(θ)φ̇θ̇ + 2 sin(θ)ṙφ̇ =
Fφ

m
,

r̈ − rθ̇2 − r sin2(θ)φ̇2 =
Fr

m
. (8.2)If the length of the lines, denoted by r, is kept 
onstant, all terms involving time derivativesof r will drop out. Furthermore, the last equation (8.2) will be
ome redundant, as thefor
e in the radial dire
tion will be augmented by a 
onstraint for
e 
ontribution Fc, sothat Eq. (8.2) is automati
ally satis�ed when the augmented for
e F ′

r := Fr − Fc repla
es
Fr, with Fc = Fr + rθ̇2 + r sin2(θ)φ̇2. In this 
ase the equations of motion1 simplify to

θ̈ =
Fθ

rm
+ sin(θ) cos(θ)φ̇2, (8.3)

φ̈ =
Fφ

rm
− 2 cot(θ)φ̇θ̇. (8.4)In our model, the for
e ve
tor F = F gra + F aer 
onsists of two 
ontributions, the grav-itational for
e F gra and the aerodynami
 for
e F aer. In 
artesian 
oordinates, F gra =

(0, 0,−mg)T with g = 9.81 m s−2 being the earth's gravitational a

eleration. In lo
al
oordinates we therefore have
Fθ = F gra

θ + F aer
θ = sin(θ)mg + F aer

θ and Fφ = F aer
φ .It remains to derive an expression for the aerodynami
 for
e F aer.8.1.2 Kite Orientation and the Aerodynami
 For
eTo model the aerodynami
 for
e that is a
ting on the kite, we �rst assume that the kite'strailing edge is always pulled by the tail into the dire
tion of the e�e
tive wind, as seen1Note that the validity of these equations requires that Fc = Fr + rθ̇2 + r sin2(θ)φ̇2 ≥ 0, as a line 
anonly pull, not push.



142 Control of a Looping KiteName Symbol Valueline length r 50 mkite mass m 1 kgwind velo
ity vw 6 m/sdensity of air ρ 1.2 kg/m3
hara
teristi
 area A 0.5 m2lift 
oe�
ient Cl 1.5drag 
oe�
ient Cd 0.29Table 8.1: The kite parameters.from the kite's inertial frame. Under this assumption the kite's longitudinal axis is alwaysin line with the e�e
tive wind ve
tor we := w− ṗ, where w = (vw, 0, 0)
T is the wind as seenfrom the earth system, and ṗ the kite velo
ity. If we introdu
e a unit ve
tor el pointingfrom the front towards the trailing edge of the kite (
f. Fig. 8.1), we therefore assume that

el =
we

‖we‖
.The transversal axis of the kite 
an be des
ribed by a perpendi
ular unit ve
tor et that ispointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinalaxis, i.e.,

et · el =
et · we

‖we‖
= 0. (8.5)The orientation of the transversal axis et against the lines' axis (whi
h is given by theve
tor er) 
an be in�uen
ed by the length di�eren
e ∆l of the two lines. If the distan
ebetween the two lines' �xing points on the kite is d, then the ve
tor from the left to theright �xing point is det, and the proje
tion of this ve
tor onto the lines' axis should equal

∆l (being positive if the right wingtip is farther away from the pilot), i.e., ∆l = d et · er.Let us de�ne the lateral angle ψ to be
ψ = arcsin

(

∆l

d

)

.We will assume that we 
ontrol this angle ψ dire
tly. It determines the orientation of etwhi
h has to satisfy:
et · er =

∆l

d
= sin(ψ). (8.6)A third requirement that et should satisfy is that

(el × et) · er =
we × et
‖we‖

· er > 0, (8.7)



8.1 The Dual Line Kite Model 143whi
h takes a

ount of the fa
t that the kite is always in the same orientation with respe
tto the lines.How to �nd a ve
tor et that satis�es these requirements (8.5)�(8.7)? Using the proje
-tion wp
e of the e�e
tive wind ve
tor we onto the tangent plane spanned by eθ and eφ,

wp
e := eθ(eθ · we) + eφ(eφ · we) = we − er(er · we),we 
an de�ne the orthogonal unit ve
tors

ew :=
wp

e

‖wp
e‖

and eo := er × ew,so that (ew, eo, er) form an orthogonal right-handed 
oordinate basis. Note that in thisbasis the e�e
tive wind we has no 
omponent in eo dire
tion, as
we = ‖wp

e‖ew + (we · er)er.We will show that the de�nition
et := ew(− cos(ψ) sin(η)) + eo(cos(ψ) cos(η)) + er sin(ψ)with

η := arcsin

(

we · er
‖wp

e‖
tan(ψ)

)satis�es the requirements (8.5)�(8.7). Equation (8.5) 
an be veri�ed by substitution of thede�nition of η into
et · we = − cos(ψ) sin(η)‖wp

e‖+ sin(ψ)(we · er) = 0.Eq. (8.6) is trivially satis�ed, and Eq. (8.7) 
an be veri�ed by 
al
ulation of
(we × et) · er = (we · ew) cos(ψ) cos(η)− (we · eo)(− cos(ψ) sin(η))

= ‖wp
e‖ cos(ψ) cos(η)(where we used the fa
t that we · eo = 0). For angles ψ and η in the range from −π/2 to

π/2 this expression is always positive. The above 
onsiderations allow to determine theorientation of the kite depending on the 
ontrol ψ and the e�e
tive wind we only. Notethat the 
onsiderations would break down if the e�e
tive wind we would be equal to zero,or if
∣

∣

∣

∣

we · er
we · ew

tan(ψ)

∣

∣

∣

∣

> 1.The two ve
tors el × et and el are the dire
tions of aerodynami
 lift and drag, respe
tively.To 
ompute the magnitudes Fl and Fd of lift and drag we assume that the lift and drag
oe�
ients Cl and Cd are 
onstant, so that we have
Fl =

1

2
ρ‖we‖

2ACl and Fd =
1

2
ρ‖we‖

2ACd,



144 Control of a Looping Kitewith ρ being the density of air, and A being the 
hara
teristi
 area of the kite.Given the dire
tions and magnitudes of lift and drag, we 
an 
ompute F aer as theirsum, yielding
F aer = Fl(el × et) + Fdelor, in the lo
al 
oordinate system

F aer
θ = Fl((el × et) · eθ) + Fd(el · eθ) and F aer

φ = Fl((el × et) · eφ) + Fd(el · eφ).The system parameters that have been 
hosen for the simulation model are listed in Ta-ble 8.1. De�ning the system state x := (θ, θ̇, φ, φ̇)T and the 
ontrol u := ψ we 
an summa-rize the system equations (8.3)�(8.4) in the short form
ẋ = f(x, u),with

f((θ, θ̇, φ, φ̇)T , ψ) :=

















θ̇

F aer
θ (θ, θ̇, φ, φ̇, ψ)

rm
+ sin(θ)

g

r
+ sin(θ) cos(θ)φ̇2

φ̇

F aer
φ (θ, θ̇, φ, φ̇, ψ)

rm
− 2 cot(θ)φ̇θ̇

















.

8.2 A Periodi
 OrbitUsing the above system model, a periodi
 orbit was determined that 
an be 
hara
terizedas a �lying eight� and whi
h is depi
ted as a φ − θ−plot in Fig. 8.2, and as a time plotin Fig. 8.3. The wind is assumed to blow in the dire
tion of the p1-axis (θ = 90o and
φ = 0o). The periodi
 solution was 
omputed using the o�-line variant of MUSCOD-II,imposing periodi
ity 
onditions with period T = 8 se
onds and suitable state boundsand a suitable obje
tive fun
tion in order to yield a solution that was 
onsidered to bea meaningful referen
e orbit. Note that the 
ontrol ψ (see Fig. 8.3) is positive when thekite shall turn in a 
lo
kwise dire
tion, as seen from the pilot's viewpoint, and negativefor an anti-
lo
kwise dire
tion. We will denote the periodi
 referen
e solution by xr(t) and
ur(t). This solution is de�ned for all t ∈ (−∞,∞) and satis�es the periodi
ity 
ondition
xr(t + T ) = xr(t) and ur(t+ T ) = ur(t).It is interesting to note that small errors a

umulate very qui
kly so that the un
on-trolled system will not stay in the periodi
 orbit very long during a numeri
al simulation(see Fig. 8.4). This observation 
an be 
on�rmed by investigating the asymptoti
 stabilityproperties of the periodi
 orbit.
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Figure 8.2: Periodi
 orbit plotted in the φ− θ−plane, as seen by the kite pilot. The dotsseparate intervals of one se
ond.
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ontrol applied to the undisturbed system.8.2.1 Stability Analysis of the Open-Loop SystemTo determine the asymptoti
 stability properties of the open-loop system along the periodi
orbit, let us 
onsider an initial value problem for the open-loop system on the interval [0, T ]
orresponding to one period:̇
x(t) = f(x(t), ur(t)), ∀t ∈ [0, T ],

x(0) = x0.The solution traje
tories x(t) 
an be regarded as fun
tions of the initial value x0. Note thatfor x0 = xr(0) the solution is identi
al to the referen
e traje
tory xr(t). The sensitivitymatri
es
W (t) :=

∂x(t)

∂x0
(xr(0)), t ∈ [0, T ],
an therefore be obtained as the solution of the matrix initial value problem:

Ẇ (t) =
∂f

∂x
(xr(t), ur(t)) · W (t) ∀t ∈ [0, T ],

W (0) = Inx .The �nal valueW (T ) is 
alled themonodromy matrix . It 
hara
terizes the sensitivity of the�nal state of ea
h period with respe
t to the initial value. Asymptoti
ally stable periodi
orbits are 
hara
terized by a monodromy matrix whose eigenvalues (also 
alled �FloquetMultipliers�) all have a modulus smaller than one, whi
h means that initial disturban
esare damped out during the 
y
les. For a proof see e.g. Amann [Ama83℄.



8.3 The Optimal Control Problem 147A numeri
al 
omputation of W (T ) for the kite model along the 
hosen periodi
 orbityields
W (T ) =









3.0182 2.4014 0.9587 −0.1307
3.3399 2.5500 0.0054 −0.3935
−2.7170 −1.8596 0.8436 0.5072
−2.8961 −2.0491 0.5601 0.4640









,whi
h has the eigenvalue spe
trum
σ (W (T )) = { 5.29, 1.53, 6.16 · 10−2, 4.17 · 10−7 },
ontaining two eigenvalues that have a modulus bigger than one. This 
on�rms that thesystem is asymptoti
ally unstable in the periodi
 referen
e orbit.8.3 The Optimal Control ProblemGiven an initial state xt0 at time t0, an optimal 
ontrol problem 
an be formulated thattakes a

ount of the obje
tive to keep the system 
lose to the referen
e orbit. For this aimwe de�ne a Lagrange term

L(x, u, t) := (x− xr(t))
TQ(x− xr(t)) + (u− ur(t))

TR(u− ur(t))with diagonal weighting matri
es
Q := ·









1.2 0 0 0
0 3.0s2 0 0
0 0 3.0 0
0 0 0 3.0s2









10−4deg−2s−1 and R := 1.0 · 10−2deg−2s−1.A hard 
onstraint is given by the fa
t that we do not want the kite to 
rash onto theground (θ = 90 degrees), and for se
urity, we require a path 
onstraint fun
tion
h(x, u) :=

(

75 deg − θ
)to be positive. Using these de�nitions, we formulate the following optimal 
ontrol problemon the moving horizon [t0, t0 + 2T ]:

min
u(·),x(·)

∫ t0+2T

t0

L(x(t), u(t), t) dt (8.8)subje
t to
ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t0 + 2T ],

x(t0) = xt0 ,

h(x(t), u(t)) ≥ 0, ∀t ∈ [t0, t0 + 2T ].
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φ [deg]Figure 8.5: Closed-loop 
ontrol applied to the undisturbed system, simulation of 100 peri-ods. Numeri
al errors are attenuated by very small 
ontrol responses (with u(t)− ur(t) inthe order of 10−2 degree) and do not a

umulate.
8.4 Closed-Loop SimulationsIn the multiple shooting dis
retization the multiple shooting intervals were 
hosen to beea
h of one se
ond length, thus allowing eight 
ontrol 
orre
tions per period T . The Hessianmatrix was approximated using the Gauss-Newton approa
h for integral least squares termsdes
ribed in Se
. 6.4. The initialization of subsequent optimization problems was a
hievedwith a shift strategy where the new �nal interval was initialized by an integration usingthe nominal open-loop 
ontrol ur(t), 
f. Se
. 4.4.1.As a �rst test of the algorithm we try to 
ontrol the undisturbed system, and the resultof a simulation of 100 periods is depi
ted in Fig. 8.5. It 
an be seen that the referen
eorbit is perfe
tly tra
ked. The dots separate intervals of one se
ond length and 
orrespondto the sampling times.For a se
ond test we give the kite a slight �ki
k� at time t = 1.0 se
onds that leadsto a disturban
e in the angular velo
ity θ̇. It 
hanges from −1 deg/s to +5 deg/s. The
losed-loop response is depi
ted in Fig. 8.6 as a φ− θ−plot.As a third test we give the kite a moderate �ki
k� at time t = 3.5 se
onds that lets theangular velo
ity θ̇ 
hange from 12 deg/s to 25 deg/s. The 
losed-loop response is depi
tedin Fig. 8.7. For a 
omparison we also show the open-loop response to this disturban
e inFig. 8.8, whi
h results in a 
rash 5 se
onds after the disturban
e.In a fourth test we �ki
k� the kite strongly at time t = 4.0 se
onds so that the angularvelo
ity θ̇ 
hanges abruptly from 20 deg/s to−7 deg/s. The 
losed-loop response is depi
tedin Fig. 8.9.
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φ [deg]Figure 8.6: Closed-loop response to a small disturban
e in θ̇ that 
hanges from −1 deg/s to
+5 deg/s at time t = 1.0 se
onds. After one period the disturban
e is nearly attenuated.
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φ [deg]Figure 8.7: Closed-loop 
ontrol response to a moderate disturban
e in θ̇ that 
hangesfrom 12 deg/s to 25 deg/s at time t = 3.5 se
onds. After 1.5 periods the disturban
e isattenuated.
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φ [deg]Figure 8.8: Open-loop response to the same disturban
e as in Fig. 8.7, at time t = 3.5 se
-onds. Five se
onds after the disturban
e the kite 
rashes onto the ground (θ=90 degrees).
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φ [deg]Figure 8.9: Closed-loop response to a strong disturban
e in θ̇ that 
hanges from 20 deg/sto a value of −7 deg/s at time t = 4.0 se
onds. After two periods the disturban
e is
ompletely attenuated.
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φ [deg]Figure 8.10: Closed-loop traje
tory for the weak disturban
e test, simulated over 100periods.As a last test we apply random noise of various magnitude to the system: disturban
eshappen with probability p = 10% s−1, and they simultaneously disturb all 4 
omponentsof the system state, with independent magnitudes that are 
hara
terized by the standarddeviations
sθ = 0.9 deg, sθ̇ = 0.9 deg s−1, sφ = 0.6 deg, and sφ̇ = 0.6 deg s−1for the weak disturban
e test, and
sθ = 4.5 deg, sθ̇ = 4.5 deg s−1, sφ = 3 deg, and sφ̇ = 3 deg s−1for the strong disturban
e test. For ea
h s
enario, we have 
arried out simulations for100 periods (i.e., for 800 se
onds). The resulting φ − θ−plots 
an be seen in Fig. 8.10 forthe weak disturban
e s
enario, and in Fig. 8.11 for the strong disturban
e s
enario. Whilethe weak s
enario shows how ni
ely the 
losed-loop system behaves even in the presen
eof moderate disturban
es, the strong disturban
e s
enario is 
ertainly at the limits ofthe appli
ability of the 
hosen 
ontrol approa
h, as the disturban
es sometimes push thesystem state out of the state bounds spe
i�ed in the optimization problem (θ ≤ 75 degrees).The resulting infeasibility of the optimization problems was 
ushioned by the relaxationstrategy of the QP solver. However, this does not give any guarantee for the working ofour approa
h in the presen
e of severe disturban
es. Instead, a s
heme employing soft
onstraint formulations should be employed.The 
omputation time for ea
h real-time iteratiion 
y
le did not ex
eed the samplingtime of one se
ond in all simulations and averaged to 0.45 se
onds with a standard deviation
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φ [deg]Figure 8.11: Closed-loop traje
tory for the strong disturban
e test, simulated over 100periods.of 0.02 se
onds (on a Compaq Alpha XP1000 workstation). The immediate feedba
k tookin average one tenth of this value, 0.05 se
onds.


