Chapter 8

Control of a Looping Kite

In order to demonstrate the versatility of the proposed real-time iteration scheme we present
here the control of an airborne kite as a periodic control example. The kite is held by two
lines which allow to control the lateral angle of the kite, see Fig. 8.1. By pulling one line
the kite will turn in the direction of the line being pulled. This allows an experienced kite
pilot to fly loops or similar figures. The aim of our automatic control is to make the kite
fly a figure that may be called a “lying eight”, with a cycle time of 8 seconds (see Fig. 8.2).
The corresponding orbit is not open-loop stable, so that feedback has to be applied during
the flight — we will show simulation results where our proposed real-time iteration scheme
was used to control the kite, with a sampling time of one second.

8.1 The Dual Line Kite Model

The movement of the kite at the sky can be modelled by Newton’s laws of motion and
a suitable model for the aerodynamic force. Most difficulty lies in the determination of
suitable coordinate systems: we will first describe the kite’s motion in polar coordinates,
and secondly determine the direction of the aerodynamic forces.

8.1.1 Newton’s Laws of Motion in Polar Coordinates

The position p € R3 of the kite can be modelled in 3-dimensional Euclidean space, choosing
the position of the kite pilot as the origin, and the third component ps to be the height of
the kite above the ground. With m denoting the mass of the kite and F' € R3 the total
force acting on the kite, Newton’s law of motion reads

d’p F

2 m’

Let us introduce polar coordinates 6, ¢, r:

p=

D1 rsin(6) cos(¢)
p=|p2| = | rsin(0)sin(¢p)
D3 rcos(6)
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Figure 8.1: A picture of the kite.

Note that the distance r between pilot and kite is usually constant during flight, and @ is
the angle that the lines form with the vertical. In these coordinates, p looks as follows
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Let us introduce a local right handed coordinate system with the three basis vectors
cos(#) cos(¢) — sin(¢) sin(#) cos(¢)
eg = | cos(0)sin(p) |, e, = | cos(¢) |, and e, = | sin(f)sin(¢p)
— sin(0) 0 cos(6)

In this coordinate system, the partial derivatives of p with respect to 6, ¢, r become
dp Op dp

55 = "o % =rsin(f)ey, and o =
and
82]) 82]) .. 92 . 82]?
502 = e 907 —rsin®(f)e, — rsin(f) cos(f)ey, and 52 = 0,
as well as
&*p &p d*p
ogon ~ 0o Grgg = e and ggg = sinle
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Eq. (8.1) can therefore be written as:

p = eq (7‘«9 — rsin(f) cos(0)$? + 27'“9)
+ e (r sin(0)¢ + 2r cos(¢) b + 2 sin(@)f“g.b)
+ e (r — > —r sin2(9)g252> :
Defining
Fo:=F-e, Fy:=F-e4, and F,:=F-e,
we can write Newton’s laws of motion in the form
r6 — rsin(0) cos(0)p? + 270 =

rsin(A)d + 2r cos(9) 8 + 2sin(0)r¢ =

S IeENICERIS

i — 1% — rsin®(0)p* = (8.2)
If the length of the lines, denoted by r, is kept constant, all terms involving time derivatives
of r will drop out. Furthermore, the last equation (8.2) will become redundant, as the
force in the radial direction will be augmented by a constraint force contribution F., so
that Eq. (8.2) is automatically satisfied when the augmented force F, := F, — F, replaces
F,, with F, = F, + rf? 4+ rsin?(f)¢2. In this case the equations of motion! simplify to

F,

0 = %—Fsin(&)cos(@)q'ﬁz, (8.3)
i = %—2c0t(9)¢9. (8.4)

In our model, the force vector F' = F*&™® 4+ F" consists of two contributions, the grav-
itational force F'#? and the aerodynamic force F?*. In cartesian coordinates, F®&?% =
(0,0,—mg)T with g = 9.81 m s™2 being the earth’s gravitational acceleration. In local
coordinates we therefore have

Fy = F{™ + F; = sin(0)mg + Fj  and  Fy = F§“.

It remains to derive an expression for the aerodynamic force F2<.

8.1.2 Kite Orientation and the Aerodynamic Force

To model the aerodynamic force that is acting on the kite, we first assume that the kite’s
trailing edge is always pulled by the tail into the direction of the effective wind, as seen

INote that the validity of these equations requires that F, = F, + r6% + rsin?(0)¢2 > 0, as a line can
only pull, not push.
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Name Symbol | Value
line length r 50 m

kite mass m 1 kg
wind velocity Vup 6 m/s
density of air p 1.2 kg/m3
characteristic area | A 0.5 m?
lift coefficient C 1.5

drag coefficient Cy 0.29

Table 8.1: The kite parameters.

from the kite’s inertial frame. Under this assumption the kite’s longitudinal axis is always
in line with the effective wind vector w, := w — p, where w = (v, 0,0)7 is the wind as seen
from the earth system, and p the kite velocity. If we introduce a unit vector e; pointing
from the front towards the trailing edge of the kite (cf. Fig. 8.1), we therefore assume that

We

€ = .
e

The transversal axis of the kite can be described by a perpendicular unit vector e; that is
pointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinal
axis, i.e.,

€t * We

= 0. (8.5)

T Tl

The orientation of the transversal axis e; against the lines’ axis (which is given by the
vector e,) can be influenced by the length difference Al of the two lines. If the distance
between the two lines’ fixing points on the kite is d, then the vector from the left to the
right fixing point is de;, and the projection of this vector onto the lines’ axis should equal
Al (being positive if the right wingtip is farther away from the pilot), i.e., Al = de; - e,.
Let us define the lateral angle 1 to be

(Al
v = arcsin (7) )

We will assume that we control this angle ¢ directly. It determines the orientation of e,
which has to satisfy:

Al
€rrer=— = sin(v)). (8.6)
A third requirement that e; should satisfy is that
(€1 X e) - e, = We X & ce, >0, (8.7)

[[wel
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which takes account of the fact that the kite is always in the same orientation with respect
to the lines.

How to find a vector e, that satisfies these requirements (8.5)—(8.7)? Using the projec-
tion w? of the effective wind vector w, onto the tangent plane spanned by ey and ey,

w? = eg(ep - we) + egley - we) = we — e,(€, - we),
we can define the orthogonal unit vectors

P
e

ew - and e, = e, X €,

]l

so that (e, e,,€,) form an orthogonal right-handed coordinate basis. Note that in this
basis the effective wind w, has no component in e, direction, as

We = ||w?|ley + (we - €,)e,.
We will show that the definition
er 1= ey (—cos(yh) sin(n)) + eo(cos(v) cos(n)) + €, sin(y)
with

. (we e
7 := arcsin
[|we ||

satisfies the requirements (8.5)—(8.7). Equation (8.5) can be verified by substitution of the
definition of n into

%ww)

60 - o = — cos(®) sin(n) || + sin()(w, - &) = 0.
Eq. (8.6) is trivially satisfied, and Eq. (8.7) can be verified by calculation of

(we X €;) - € = (We + €4) cos(?h) cos(n) — (we - €,)(— cos(v) sin(n))
= [[wg|| cos(¢) cos(n)

(where we used the fact that w, - e, = 0). For angles ¢ and 7 in the range from —m/2 to
7 /2 this expression is always positive. The above considerations allow to determine the
orientation of the kite depending on the control 1) and the effective wind w, only. Note
that the considerations would break down if the effective wind w, would be equal to zero,
or if

We * €
We * €y

tan(w)' > 1.

The two vectors e¢; X e; and e; are the directions of aerodynamic lift and drag, respectively.
To compute the magnitudes F; and Fj; of lift and drag we assume that the lift and drag
coefficients C} and C, are constant, so that we have

1 1
F, = §P”we”2ACl and [y = §P”we”2ACd>
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with p being the density of air, and A being the characteristic area of the kite.
Given the directions and magnitudes of lift and drag, we can compute F*" as their
sum, yielding

e = E(el X 6t) + Fdel
or, in the local coordinate system
g = Fi((er X e:) - €g) + Fuler - €g) and FJ™ = Fi((e; X e;) - eg) + Fuler - €g).

The system parameters that have been chosen for the simulation model are listed in Ta-
ble 8.1. Defining the system state = := (6,0, ¢, )T and the control u := 1) we can summa-
rize the system equations (8.3)—(8.4) in the short form

i‘ = f(x7 u)?
with
0
g

Féler(e,é,qbaq'ﬁ,r(,b) . . o
), &, ¢ + sin(f)= + sin(6) cos(#)¢
T L .
£((0,0,6,0)" ) = rm T "
F¢> (9,,;97;:?, ¢> W _9 COt(@)Q'ﬁé

8.2 A Periodic Orbit

Using the above system model, a periodic orbit was determined that can be characterized
as a “lying eight” and which is depicted as a ¢ — —plot in Fig. 8.2, and as a time plot
in Fig. 8.3. The wind is assumed to blow in the direction of the p;-axis (6 = 90° and
¢ = 0°). The periodic solution was computed using the off-line variant of MUSCOD-II,
imposing periodicity conditions with period 7' = 8 seconds and suitable state bounds
and a suitable objective function in order to yield a solution that was considered to be
a meaningful reference orbit. Note that the control ¢ (see Fig. 8.3) is positive when the
kite shall turn in a clockwise direction, as seen from the pilot’s viewpoint, and negative
for an anti-clockwise direction. We will denote the periodic reference solution by x,.(t) and
u,(t). This solution is defined for all ¢ € (—o0, 00) and satisfies the periodicity condition
. (t+T)=z(t) and u,.(t + T) = u,(t).

It is interesting to note that small errors accumulate very quickly so that the uncon-
trolled system will not stay in the periodic orbit very long during a numerical simulation
(see Fig. 8.4). This observation can be confirmed by investigating the asymptotic stability
properties of the periodic orbit.



8.2 A Periodic Orbit 145

30

40f

0 [deg]
[e2]
o

60 40 20 -20 -40 -60

0
@ [deq]

Figure 8.2: Periodic orbit plotted in the ¢ — #—plane, as seen by the kite pilot. The dots
separate intervals of one second.
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Figure 8.3: Periodic orbit: system states and control ¢ plotted for one period T'= 8 s .
Note that 6 and 6 oscillate with double frequency.
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Figure 8.4: Open-loop control applied to the undisturbed system.

8.2.1 Stability Analysis of the Open-Loop System

To determine the asymptotic stability properties of the open-loop system along the periodic
orbit, let us consider an initial value problem for the open-loop system on the interval [0, T']
corresponding to one period:

2(t) = f(x(t), ur(t), Viel[0,T],

z(0) = z.

The solution trajectories z(¢) can be regarded as functions of the initial value zo. Note that
for xy = z,.(0) the solution is identical to the reference trajectory x.(t). The sensitivity
matrices

dx(t)
8.170

W(t) = (.(0)), tel0,T],

can therefore be obtained as the solution of the matrix initial value problem:

W (t) = =~ (ar(8), ur (1)) - W(t) Vit e[0,T],

The final value W(T') is called the monodromy matriz. It characterizes the sensitivity of the
final state of each period with respect to the initial value. Asymptotically stable periodic
orbits are characterized by a monodromy matrix whose eigenvalues (also called “Floquet
Multipliers”) all have a modulus smaller than one, which means that initial disturbances
are damped out during the cycles. For a proof see e.g. Amann [Ama83|.
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A numerical computation of W (T') for the kite model along the chosen periodic orbit
yields

3.0182 24014 0.9587 —0.1307
3.3399  2.5500 0.0054 —0.3935
—2.7170 —1.8596 0.8436 0.5072 ’
—2.8961 —2.0491 0.5601 0.4640

W(T) =

which has the eigenvalue spectrum
oc(W(T))={529, 153, 6.16-1072, 4.17-107" },

containing two eigenvalues that have a modulus bigger than one. This confirms that the
system is asymptotically unstable in the periodic reference orbit.

8.3 The Optimal Control Problem

Given an initial state x;, at time %y, an optimal control problem can be formulated that
takes account of the objective to keep the system close to the reference orbit. For this aim
we define a Lagrange term

L(z,u,t) = (2 — 2,(1)) 7 Q(x — 2,()) + (v — u,(t))" R(u — u,(t))

with diagonal weighting matrices

1.2 0 0 0
2
Q:=- 8 3'88 300 8 107*deg ?s™' and R:=1.0-102deg s .
0 0 0 3.0s

A hard constraint is given by the fact that we do not want the kite to crash onto the
ground (6 = 90 degrees), and for security, we require a path constraint function

h(z,u) := (75 deg — 0)

to be positive. Using these definitions, we formulate the following optimal control problem
on the moving horizon [ty, to + 277

to+2T
u%r)uwr%)/t L(z(t),u(t),t) dt (8.8)
subject to
z(t) = f(z(t),u(t)), Yt € [to, to + 271,
:L'(to) = Ttg,
h(z(t),u(t)) >0, Yt € [to, to + 2T.
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Figure 8.5: Closed-loop control applied to the undisturbed system, simulation of 100 peri-
ods. Numerical errors are attenuated by very small control responses (with u(t) — u,(t) in
the order of 1072 degree) and do not accumulate.

8.4 Closed-Loop Simulations

In the multiple shooting discretization the multiple shooting intervals were chosen to be
each of one second length, thus allowing eight control corrections per period 7'. The Hessian
matrix was approximated using the Gauss-Newton approach for integral least squares terms
described in Sec. 6.4. The initialization of subsequent optimization problems was achieved
with a shift strategy where the new final interval was initialized by an integration using
the nominal open-loop control w,(t), cf. Sec. 4.4.1.

As a first test of the algorithm we try to control the undisturbed system, and the result
of a simulation of 100 periods is depicted in Fig. 8.5. It can be seen that the reference
orbit is perfectly tracked. The dots separate intervals of one second length and correspond
to the sampling times.

For a second test we give the kite a slight “kick” at time ¢ = 1.0 seconds that leads
to a disturbance in the angular velocity 6. It changes from —1 deg/s to +5 deg/s. The
closed-loop response is depicted in Fig. 8.6 as a ¢ — 6—plot.

As a third test we give the kite a moderate “kick” at time ¢t = 3.5 seconds that lets the
angular velocity 6 change from 12 deg/s to 25 deg/s. The closed-loop response is depicted
in Fig. 8.7. For a comparison we also show the open-loop response to this disturbance in
Fig. 8.8, which results in a crash 5 seconds after the disturbance.

In a fourth test we “kick” the kite strongly at time ¢ = 4.0 seconds so that the angular
velocity 6 changes abruptly from 20 deg/s to —7 deg/s. The closed-loop response is depicted
in Fig. 8.9.
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Figure 8.6: Closed-loop response to a small disturbance in 6 that changes from —1 deg/s to
+5 deg/s at time ¢t = 1.0 seconds. After one period the disturbance is nearly attenuated.
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Figure 8.7: Closed-loop control response to a moderate disturbance in 6 that changes
from 12 deg/s to 25 deg/s at time ¢t = 3.5 seconds. After 1.5 periods the disturbance is

attenuated.
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Figure 8.8: Open-loop response to the same disturbance as in Fig. 8.7, at time ¢ = 3.5 sec-
onds. Five seconds after the disturbance the kite crashes onto the ground (=90 degrees).
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Figure 8.9: Closed-loop response to a strong disturbance in 0 that changes from 20 deg/s
to a value of —7 deg/s at time ¢ = 4.0 seconds. After two periods the disturbance is

completely attenuated.
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Figure 8.10: Closed-loop trajectory for the weak disturbance test, simulated over 100
periods.

As a last test we apply random noise of various magnitude to the system: disturbances
happen with probability p = 10% s~!, and they simultaneously disturb all 4 components
of the system state, with independent magnitudes that are characterized by the standard
deviations

s = 0.9deg, s;=0.9deg st sy =0.6deg, and s;=0.6deg st

for the weak disturbance test, and

sg = 4.5deg, s;=4.5deg s sp =3deg, and sy =3degs”

1
for the strong disturbance test. For each scenario, we have carried out simulations for
100 periods (i.e., for 800 seconds). The resulting ¢ — —plots can be seen in Fig. 8.10 for
the weak disturbance scenario, and in Fig. 8.11 for the strong disturbance scenario. While
the weak scenario shows how nicely the closed-loop system behaves even in the presence
of moderate disturbances, the strong disturbance scenario is certainly at the limits of
the applicability of the chosen control approach, as the disturbances sometimes push the
system state out of the state bounds specified in the optimization problem (6 < 75 degrees).
The resulting infeasibility of the optimization problems was cushioned by the relaxation
strategy of the QP solver. However, this does not give any guarantee for the working of
our approach in the presence of severe disturbances. Instead, a scheme employing soft
constraint formulations should be employed.

The computation time for each real-time iteratiion cycle did not exceed the sampling
time of one second in all simulations and averaged to 0.45 seconds with a standard deviation
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Figure 8.11: Closed-loop trajectory for the strong disturbance test, simulated over 100
periods.

of 0.02 seconds (on a Compaq Alpha XP1000 workstation). The immediate feedback took
in average one tenth of this value, 0.05 seconds.



